MATH2017 Homework 2 Feedback

Petra Staynova

Question 1

1. Note that the complement of a 'not open' set is not always open. For example, both the rationals \mathbb{Q} and the irrationals $\mathbb{R} \backslash \mathbb{Q}$ are not open subsets of \mathbb{R} (they are also both not closed).
2. for the first set, careful if you use the argument $\delta / 2 \notin \mathbb{Z}$! You need to first make sure δ is not an even natural number.
3. Note the difference between \in and \subset - and make sure you use the correct one!
4. Boundedness/unboundedness do not relate to a set being open/closed.
5. To show a set $X \subset \mathbb{R}$ is not open you need to show that 'there is $x \in X$ such that for all $\delta>0$, we have that $(x-\delta, x+\delta)$ is not a subset of X^{\prime}. Showing just one such δ exists is not enough.
Question 2
6. Some students opted to show $f^{\prime}(x)>0$ for all x, hence f is strictly increasing hence injective.
7. You used bad justification. To show $f^{\prime}(x)>0$, try setting $y=x^{3}$ and completing the square.
8. Note that having two polynomials (one in x, one in y) be equal (for some value of x and y) does not mean that you can make all the powers equal (i.e. $x^{n}=y^{n}$ for all n).
Question 3
9. For the third expression, you forgot to mention it's by the product rule.
10. For the third expression, you missed a ' - ' sign, which messed up your answer. Keep in mind to calculate $g^{\prime}(-x)$ you should use the chain rule. (Note: about 70 percent of your colleagues made the same error!)
Question 4
11. You need to separately check (from first principles, for eg) that f is differentiable at the point 0 (note this is not an interval, so most theorems won't work).
12. For the first part, note it is not enough to show that $f(x) \geqslant 0$ - you need to point out that $f(0)=0$ to show that this is indeed the minimum, rather than just a lower bound for the values of $f(x)$.
13. For the first part, some people tried using the Extreme Value Theorem. Keep in mind it only applies to closed intervals! Continuity in general does not imply a min $/$ max value is attained $-\mathrm{eg}, f(x)=x^{3}$ is continuous on \mathbb{R}, but has neither a min nor a max!

Question 5
14. Make sure you give the values as exact numbers (eg, π instead of 3.14).
15. Make sure you simplify your expressions. For example, you know that $\tan ^{-1}(1)=\pi / 4$.
16. Make some note that the function is decreasing hence you sample the endpoints. Or otherwise justify using the bounds you do.

