Schanuel's Conjecture

Petra Staynova

Durham University
December 5, 2013

The Conjecture

Conjecture (Schanuel)

If $\alpha_{1}, \ldots, \alpha_{n}$ are n linearly-independent over \mathbb{Q} complex numbers, then at least n of the following $2 n$ numbers are algebraically independent over \mathbb{Q} :

$$
\alpha_{1}, \ldots, \alpha_{n}, e^{\alpha_{1}}, \ldots, e^{\alpha_{n}}
$$

The Hermite-Lindemann Theorem

Theorem (Hermite-Lindemann)

If x is a non-zero complex number, then at least one of x, e^{x} is transcendental.

Proposition

The following numbers are transcendental:
(1) e
(2) π
(3) $\log 2$
(a) $e^{\sqrt{2}}$

The Lindemann-Weierstraß Theorem

Theorem (Lindemann-Weierstraß)

If $x_{1}, \ldots, x_{n} \in \overline{\mathbb{Q}}$ are \mathbb{Q}-linearly independent, then the numbers $e^{x_{1}}, \ldots, e^{x_{n}}$ are \mathbb{Q}-algebraically independent.

Note (Proofs of the Lindemann-Weierstraß Theorem)

- Lindemann approach
- Weierstraß approach
- Niven approach (Galois Theory)

The Gel'fond-Schneider Theorem and Baker's Theorem

Theorem (Gel'fond-Schneider)
If $\alpha, \beta \in \overline{\mathbb{Q}} \backslash\{0\}, \alpha \neq 1$, and $\beta \notin \mathbb{Q}$, then any value of α^{β} is transcendental.

Theorem (Baker's Theorem)

If $\alpha_{1}, \ldots, \alpha_{n} \in \overline{\mathbb{Q}}$ and $\log \alpha_{1}, \ldots, \log \alpha_{n}$ are \mathbb{Q}-linearly independent, then the numbers $1, \log \alpha_{1}, \ldots, \log \alpha_{n}$ are linearly independent over $\overline{\mathbb{Q}}$.

The Six Exponentials Theorem

Theorem (Six Exponentials)

Let $x_{1}, x_{2} \in \mathbb{C}$ be linearly independent over \mathbb{Q}, and let $y_{1}, y_{2}, y_{3} \in \mathbb{C}$ also be linearly independent over \mathbb{Q}. Then at least one of the six numbers

$$
e^{y_{1} x_{1}}, e^{y_{1} x_{2}}, e^{y_{2} x_{1}}, e^{y_{2} x_{2}}, e^{y_{3} x_{1}}, e^{y_{3} x_{2}}
$$

is transcendental (over \mathbb{Q}).

Note

- Special case attributed to Siegel in a paper by L. Alaoglu and P. Erdős in 1944.
- Two independent proofs of the Six Exponentials Theorem were published by S. Lang and K. Ramachandra.
- Can also be deduced from a much more general result by Theodor Schneider.

Consequences of Schanuel's Conjecture Which are Conjectures

By induction on n, one can use Schanuel's Conjecture to obtain the algebraic independence of

$$
e+\pi, e \pi, \pi^{e}, e^{e}, e^{e^{2}}, \ldots, e^{e^{e}}, \ldots, \pi^{\pi}, \pi^{\pi^{2}}, \ldots, \pi^{\pi^{\pi}}, \ldots
$$

and of

$$
\log \pi, \log (\log 2), \pi \log 2,(\log 2)(\log 3), 2^{\log 2},(\log 2)^{\log 3}, \ldots
$$

Consequences of Schanuel's Conjecture Which are Conjectures (cont'd)

Conjecture

If $x_{1}, x_{2} \in \mathbb{C}$ are \mathbb{Q}-linearly independent, then at least 2 of the 4 numbers $x_{1}, x_{2}, e^{x_{1}}, e^{x_{2}}$ are algebraically independent.

We obtain the algebraic independence of:
(1) e and π;
(2) e and e^{e};
(3) π and e^{π};
(4) $\log 2$ and $\log 3$;
(5) $\log 2$ and $2^{\log 2}$.

Consequences of Schanuel's Conjecture Which are Conjectures (cont'd)

To give an idea of the difficulty of these seeminly innocuous consequences, item ?? was not proven until 1996:

```
Theorem (Nesterenko)
\(\pi\) and \(e^{\pi}\) are algebraically independent.
```


The Four Exponentials Conjecture

We also don't know if there exist two logaritms of algebraic numbers which are algebraically independent.

Conjecture (Four Exponentials)

Given $\alpha_{1}, \ldots, \alpha_{4} \in \mathbb{C}$ such that $\left(\log \alpha_{1}\right)\left(\log \alpha_{4}\right)=\left(\log \alpha_{2}\right)\left(\log \alpha_{3}\right)$, then either $\log \alpha_{1}$ and $\log \alpha_{2}$ are linearly dependent, or else $\log \alpha_{1}$ and $\log \alpha_{3}$ are linearly dependent.

Conjecture (Four Exponentials, restated)

If $\alpha_{1}, \alpha_{2}, \beta_{2}, \beta_{2} \in \mathbb{C}$ are such that α_{1}, α_{2} are linearly independent over \mathbb{Q} and β_{1}, β_{2} are \mathbb{Q}-linearly independent, then at least one of the four numbers

$$
e^{\alpha_{1} \beta_{1}}, e^{\alpha_{1} \beta_{2}}, e^{\alpha_{2} \beta_{1}}, e^{\alpha_{2} \beta_{2}}
$$

is transcendental.

Corollaries of Four Exponentials

Corollary

If for some $\alpha \in \mathbb{C}$, both $2^{\alpha} \in \mathbb{N}$ and $3^{\alpha} \in \mathbb{N}$, then $\alpha \in \mathbb{N}$.
It is interesting to ask:

Open Question

If $3^{\alpha}-2^{\alpha} \in \mathbb{N}$ for $\alpha \in \mathbb{C}$, can we deduce that either $\alpha \in \mathbb{N}$ or $\alpha \in \mathbb{C} \backslash \overline{\mathbb{Q}}$?

Proposition (PS)

Schanuel's Conjecture implies that if $3^{\alpha}-2^{\alpha} \in \mathbb{N}$, then $\alpha \in \mathbb{Q}$ or $\alpha \in \mathbb{C} \backslash \overline{\mathbb{Q}}$.

Proof

Assume Schanuel's Conjecture and consider the set $\{\log 2, \log 3, \alpha \log 2, \alpha \log 3\}$ for α an irrational algebraic number. This set is \mathbb{Q}-linearly independent, so by SC,

$$
\operatorname{trdeg}_{\mathbb{Q}}\left(\mathbb{Q}\left(\log 2, \log 3, \alpha \log 2, \alpha \log 3,2,3,2^{\alpha}, 3^{\alpha}\right)\right) \geqslant 4 .
$$

Noting that
$\mathbb{Q}\left(\log 2, \log 3, \alpha \log 2, \alpha \log 3,2,3,2^{\alpha}, 3^{\alpha}\right)=\mathbb{Q}\left(\log 2, \log 3,2^{\alpha}, 3^{\alpha}\right)$
and applying properties of bases of extension fields, we have

$$
\left.\operatorname{trdeg}_{\mathbb{Q}}\left(\mathbb{Q}\left(\log 2, \log 3,2^{\alpha}, 3^{\alpha}\right)\right\}\right)=4
$$

Proof, cont'd

Hence, $3^{\alpha}-2^{\alpha}$ is transcendental for α algebraic irrational. By the contrapositive, we have that if $3^{\alpha}-2^{\alpha} \in \mathbb{N}$, then α cannot be algebraic irrational, so $\alpha \in \mathbb{Q}$ or $\alpha \in \mathbb{C} \backslash \overline{\mathbb{Q}}$.

Consequences of Schanuel's Conjecture Which are Conjectures (cont'd)

Gel'fond (in 1948) and Schneider (in 1952) conjectured that:

Conjecture

If $\alpha, \beta \in \overline{\mathbb{Q}}$ and if β has degree $d \geqslant 2$, then
$\operatorname{trdeg}_{\mathbb{Q}}\left(\mathbb{Q}\left(\alpha^{\beta}, \ldots, \alpha^{\beta^{d-1}}\right)\right)=d-1$.

Conjecture (Gel'fond)

If $\alpha_{1}, \ldots, \alpha_{n} \in \overline{\mathbb{Q}}$ are linearly independent over \mathbb{Q}, and $\beta_{1}, \ldots, \beta_{n} \in \overline{\mathbb{Q}} \backslash\{0\}$ are such that $\log \beta_{1}, \ldots, \log \beta_{n}$ are also linearly independent over \mathbb{Q}, then

$$
e^{\alpha_{1}}, \ldots, e^{\alpha_{n}}, \log \beta_{1}, \ldots, \log \beta_{n}
$$

are $\overline{\mathbb{Q}}$-algebraically independent.

Even more conjectural consequences of Schanuel's Conjecture

Conjecture

[Algebraic Independence of Logarithms] Let $\beta_{1}, \ldots, \beta_{n} \in \overline{\mathbb{Q}} \backslash\{0\}$ and suppose that $\log \beta_{1}, \ldots, \log \beta_{n}$ are \mathbb{Q}-linearly independent. Then $\log \beta_{1}, \ldots, \log \beta_{n}$ are $\overline{\mathbb{Q}}$-algebraically independent.

Conjecture

If $\alpha, \beta_{1}, \ldots, \beta_{n} \in \overline{\mathbb{Q}}, \alpha \neq 0,1$, and $1, \beta_{1}, \ldots, \beta_{n}$ are linearly independent over \mathbb{Q}, then $\log \alpha, \alpha^{\beta_{1}}, \ldots, \alpha^{\beta_{n}}$ are $\overline{\mathbb{Q}}$-algebraically independent.

Even more conjectural consequences of Schanuel's Conjecture

Lang and Ramachandra independently stated special cases of yet another conjecture which follows from Schanuel's Conjecture:

Conjecture (Lang and Ramachandra)

If $\alpha_{1}, \ldots, \alpha_{n}$ are \mathbb{Q}-linearly independent, and β is a transcendental number, then

$$
\operatorname{trdeg}_{\mathbb{Q}}\left(\mathbb{Q}\left(e^{\alpha_{1}}, \ldots, e^{\alpha_{n}}, e^{\alpha_{1} \beta}, \ldots, e^{\alpha_{n} \beta}\right)\right) \geqslant n-1
$$

An interesting consequence

Another interesting consequence is:

Conjecture

The numbers
$e, e^{\pi}, e^{e}, e^{i}, \pi, \pi^{\pi}, \pi^{e}, \pi^{i}, 2^{\pi}, 2^{e}, 2^{i}, \log \pi, \log 2, \log 3, \log \log 2,(\log 2)^{\log 3}, 2^{\sqrt{2}}$ are \mathbb{Q}-algebraically independent (and, in particular, they are transcendental).

Lang's Conjecture

We now turn to a conjecture by Lang.

Definition

We define the field E by transfinite induction on the ordinals:
(1) $E_{0}=\overline{\mathbb{Q}}$,
(2) $E_{n+1}=\overline{E_{n}\left(e^{x}: x \in E_{n}\right)}$,
(3) $E=E_{\omega}=\bigcup_{n \leqslant \omega} E_{n}$

Note

For ordinals $\alpha>\omega, E_{\alpha}=E$. In particular, $E_{\omega+1}=\overline{E_{\omega}\left(e^{x}: x \in E_{\omega}\right)}=\overline{E\left(e^{x}: x \in E\right)}=E$.

Lang's Conjecture

Proposition

Schanuel's Conjecture implies that $\pi \notin E$.

Definition

We define the field L by
(1) $L_{0}=\overline{\mathbb{Q}}$,
(2) $L_{n+1}=\overline{L_{n}\left(\log x: x \in \mathbb{E}_{n}\right)}$,
(3) $L=L_{\omega}=\bigcup_{n<\omega} L_{n}$,
again noting that $L_{\omega+1}=L$.

Lang's Conjecture

Definition (linearly disjoint field extensions)

Let $F \supset K$ be a field extension and $K \subseteq F_{1}, F_{2} \subseteq F$ be two subextensions. We say they are linearly disjoint over K if and only if whenever $\left\{x_{1}, \ldots, x_{n}\right\} \subset F_{1}$ is linearly independent over K, then $\left\{x_{1}, \ldots, x_{n}\right\}$ is also linearly independent over F_{2}.

Theorem (Lang's Exercise)

Schanuel's Conjecture implies that the fields E and L are linearly disjoint over \mathbb{Q}.

Lang's Conjecture, corollaries

Corollary

Schanuel's Conjecture implies that:
(1) $L \cap E=\overline{\mathbb{Q}}$;
(2) $\pi \notin E$;

The following corollary to Lang is interesting in light of the previous Conjectures:

Corollary

Schanuel's Conjecture implies that:
(1) $\pi, \log \pi, \log \log \pi, \ldots$ are algebraically independent over E;
(2) $e, e^{e}, e^{e^{e}}, \ldots$ are algebraically independent over L;

Chow's Interesting Result I

We note that the Hermite-Lindemann Theorem can be restated as:

Theorem

The only solution to equation

$$
e^{\alpha}=\beta
$$

in the algebraic numbers is $\alpha=0, \beta=1$.
We know that the equation has many solutions for $\alpha, \beta \in \mathbb{C}$. But can we do better in narrowing down the domain over which it still has solutions? A natural idea would be to take $\overline{\mathbb{Q}}$ and close it with respect to taking exp and log, which leads us to the following definition:

Chow's Interesting Result II

Definition

A subfield F of \mathbb{C} is closed under \exp and \log if $(1) \exp (x) \in F$ for all $x \in F$ and (2) $\log (x) \in F$ for all nonzero $x \in F$, where \log is the branch of the natural $\log a r i t h m$ function such that $-\pi<\operatorname{Im}(\log x) \leqslant \pi$ for all x. The field \mathbb{E} of $E L$ numbers is the intersection of all subfields of \mathbb{C} that are closed under exp and log.

Now, let us make the question a bit more specific: rather than considering pairs (α, β), we consider the special case when $\alpha=-\beta$, so now we ask whether the equation

$$
\begin{equation*}
\alpha+e^{\alpha}=0 \tag{1}
\end{equation*}
$$

has a real root in \mathbb{E}. In [?], Timothy Chow claims that the Conjecture we have just stated is still unsolved:

Chow's Interesting Result III

Conjecture (Chow)

The real root R of $\alpha+e^{\alpha}=0$ is not in \mathbb{E}.

Theorem

Schanuel's Conjecture implies that the real root R of $\alpha+e^{\alpha}=0$ is not in \mathbb{E}.

In fact, Schanuel's Conjecture implies a stronger result, due to Lin [?]:

Theorem

Schanuel's Conjecture implies that whenever $f(x, y) \in \overline{\mathbb{Q}}[x, y]$ is an irreducible polynomial and $f(\alpha, \exp (\alpha))=0$ for some $\alpha \in \mathbb{C} \backslash\{0\}$, then $\alpha \notin \mathbb{L}$, where \mathbb{L} is the smallest algebraically closed subfield of \mathbb{C} that is closed under \exp and log.

Even even more consequences! I

A curious result is given by Sondow:

Theorem

Assuming Schanuel's Conjecture, let $z, w \in \mathbb{C} \backslash\{0,1\}$. If both $z^{w}, w^{z} \in \overline{\mathbb{Q}}$, then z and w are either both rational or both transcendental.

There is another very interesting consequence of Schanuel's Conjecture by Guiseppina Terzo, concerning algebraic relations among the elements of the exponential ring $\left(\mathbb{C}, e^{x}\right)$. Let us first give the formal definition, found in:

Definition

An exponential ring is a pair (R, E) with R a commutative ring with 1 and $E: R \rightarrow \mathcal{U}(R)$ a morphism of the additive group of R into the multiplicative group of units of R satisfying $E(x+y)=E(x) . E(y)$ for all $x, y \in R$, and $E(0)=1$.

Even even more consequences! II

So, intuitively, E plays the role of the exponential function in the commutative ring R. For her result, Terzo uses a more general version of Schanuel's Conjecture, which holds for any exponential ring:

Conjecture (Schanuel's Condition)

An exponential ring R satisfies Schanuel's Condition if R is a characteristic 0 domain and whenever $\alpha_{1}, \ldots, \alpha_{n}$ in R are linearly independent over \mathbb{Q}, the ring $\mathbb{Z}\left[\alpha_{1}, \ldots, \alpha_{n}, E\left(\alpha_{1}\right), \ldots, E\left(\alpha_{n}\right)\right]$ has transcendence degree at least n over \mathbb{Q}.

We recall that:

Definition

The characteristic of a field K is the smallest positive integer n with the property $n x=0$ for all $x \in K$, and it is zero if no such n exists.

With these preliminaries in mind, Terzo's result states:

Even even more consequences! III

Theorem

Assuming Schanuel's Conjecture, there are no further relations between π and i except the known ones, $e^{i \pi}=-1$ and $i^{2}=-1$.

Connections with Model Theory, take I

Definition (decidability)

A theory is decidable iff there is an effective procedure that, given an arbitrary formula expressible in the language of the theory, decides whether the formula is a member of the theory or not.

Open Question (Tarski, 1951)

Is the theory of the real field with exponentiation, $\mathbb{R}_{\exp }$ decidable?

Theorem (McIntyre and Wilkie, 1996)

Schanuel's Conjecture implies that the real field with exponentiation, $\mathbb{R}_{\exp }$, is decidable.

Zilber's Result

"It's always a pleasure to introduce ideas from model theory to people who do real mathematics." Professor Boris Zilber

Definition

Let $X \subseteq K$ be finite. We define a dimension

$$
\partial(X)=\sup \{\operatorname{trdeg}(Y \cup E(\operatorname{span}(Y))-\operatorname{lindim}(Y): X \subseteq Y \text { is finite }\}
$$

and a closure operator

$$
\operatorname{cl}(X)=\{a: \partial(X)=\partial(X a)\}
$$

Zilber's Result

Theorem (Zilber, 2005)

For all uncountable cardinals κ, there is a unique model of Φ of cardinality κ. If $(K,+, ., E) \vDash \Phi$, then every definable subset of K is countable or with countable complement. If $A \subseteq K$ is finite and $a, b \notin \operatorname{cl}(A)$ there is an automorphism of K taking a to b.

Zilber's Result

Moreover, if $(K,+, ., E) \vDash \Phi$, then $(K,+, ., E)$ satisfies the following five axioms:

Axiom (EXP)

$$
\begin{aligned}
& E\left(x_{1}+x_{2}\right)=E\left(x_{1}\right) \cdot E\left(x_{2}\right) \\
& \operatorname{ker}(E)=\pi \mathbb{Z}, \text { some } \pi \in K .
\end{aligned}
$$

Axiom (SCH)

$$
\operatorname{trdeg}(X \cup E(X))-\operatorname{lindim}(X) \geqslant 0
$$

Zilber's Result

Axiom (EC)

For any non-overdetermined irreducible system of polynomial equations

$$
P\left(x_{1}, \ldots, x_{n}, y_{1}, \ldots, y_{n}\right)=0
$$

there exists a generic solution satisfying

$$
y_{i}=E\left(x_{i}\right) i=1, \ldots, n
$$

Axiom (CC)

Analytic subsets of K^{n} of dimension 0 are countable.

Axiom $\left(\mathrm{ACF}_{0}\right)$

Axioms for algebraically closed fields of characteristic 0 .

Even more from Zilber

Conjecture

The field of complex numbers with exponentiation, $\mathbb{C}_{\text {exp }}$, is isomorphic to the unique field with exponentiation K_{E} of cardinality $2^{\aleph_{0}}$.

We conclude with a final interesting result from Model Theory which runs in a similar vein:

Theorem

There are at most countably many essential counterexamples to Schanuel's Conjecture.

Want more fun consequences?

- Lang's Exercise
- Chow's Interesting Result
- Terso's Curious Consequence
- Some of the Proofs we have omitted

