Schanuel's Conjecture

Petra Staynova

Durham University

December 5, 2013

The Conjecture

Conjecture (Schanuel)

If $\alpha_1, \ldots, \alpha_n$ are n linearly-independent over $\mathbb Q$ complex numbers, then at least n of the following 2n numbers are algebraically independent over $\mathbb Q$:

$$\alpha_1,\ldots,\alpha_n,e^{\alpha_1},\ldots,e^{\alpha_n}.$$

The Hermite-Lindemann Theorem

Theorem (Hermite-Lindemann)

If x is a non-zero complex number, then at least one of x, e^x is transcendental.

Proposition

The following numbers are transcendental:

- **0** e
- 2 π
- **3** log 2
- **4** $e^{\sqrt{2}}$

The Lindemann-Weierstraß Theorem

Theorem (Lindemann-Weierstraß)

If $x_1, \ldots, x_n \in \overline{\mathbb{Q}}$ are \mathbb{Q} -linearly independent, then the numbers e^{x_1}, \ldots, e^{x_n} are \mathbb{Q} -algebraically independent.

Note (Proofs of the Lindemann-Weierstraß Theorem)

- Lindemann approach
- Weierstraß approach
- Niven approach (Galois Theory)

The Gel'fond-Schneider Theorem and Baker's Theorem

Theorem (Gel'fond-Schneider)

If $\alpha, \beta \in \overline{\mathbb{Q}} \setminus \{0\}$, $\alpha \neq 1$, and $\beta \notin \mathbb{Q}$, then any value of α^{β} is transcendental.

Theorem (Baker's Theorem)

If $\alpha_1, \ldots, \alpha_n \in \overline{\mathbb{Q}}$ and $\log \alpha_1, \ldots, \log \alpha_n$ are \mathbb{Q} -linearly independent, then the numbers $1, \log \alpha_1, \ldots, \log \alpha_n$ are linearly independent over $\overline{\mathbb{Q}}$.

The Six Exponentials Theorem

Theorem (Six Exponentials)

Let $x_1, x_2 \in \mathbb{C}$ be linearly independent over \mathbb{Q} , and let $y_1, y_2, y_3 \in \mathbb{C}$ also be linearly independent over \mathbb{Q} . Then at least one of the six numbers

$$e^{y_1x_1}, e^{y_1x_2}, e^{y_2x_1}, e^{y_2x_2}, e^{y_3x_1}, e^{y_3x_2}$$

is transcendental (over \mathbb{Q}).

Note

- Special case attributed to Siegel in a paper by L. Alaoglu and P. Erdős in 1944.
- Two independent proofs of the Six Exponentials Theorem were published by S. Lang and K. Ramachandra.
- Can also be deduced from a much more general result by Theodor Schneider.

Consequences of Schanuel's Conjecture Which are Conjectures

By induction on n, one can use Schanuel's Conjecture to obtain the algebraic independence of

$$e + \pi, e\pi, \pi^e, e^e, e^{e^2}, \dots, e^{e^e}, \dots, \pi^{\pi}, \pi^{\pi^2}, \dots, \pi^{\pi^{\pi}}, \dots$$

and of

$$\log \pi, \log(\log 2), \pi \log 2, (\log 2)(\log 3), 2^{\log 2}, (\log 2)^{\log 3}, \dots$$

Consequences of Schanuel's Conjecture Which are Conjectures (cont'd)

Conjecture

If $x_1, x_2 \in \mathbb{C}$ are \mathbb{Q} -linearly independent, then at least 2 of the 4 numbers $x_1, x_2, e^{x_1}, e^{x_2}$ are algebraically independent.

We obtain the algebraic independence of:

- \bullet e and π :
- \bigcirc e and e^e ;
- \odot π and e^{π} ;
- log 2 and log 3;
- \odot log 2 and $2^{\log 2}$.

Consequences of Schanuel's Conjecture Which are Conjectures (cont'd)

To give an idea of the difficulty of these seeminly innocuous consequences, item ?? was not proven until 1996:

Theorem (Nesterenko)

 π and e^{π} are algebraically independent.

The Four Exponentials Conjecture

We also don't know if there exist two logaritms of algebraic numbers which are algebraically independent.

Conjecture (Four Exponentials)

Given $\alpha_1, \ldots, \alpha_4 \in \mathbb{C}$ such that $(\log \alpha_1)(\log \alpha_4) = (\log \alpha_2)(\log \alpha_3)$, then either $\log \alpha_1$ and $\log \alpha_2$ are linearly dependent, or else $\log \alpha_1$ and $\log \alpha_3$ are linearly dependent.

Conjecture (Four Exponentials, restated)

If $\alpha_1,\alpha_2,\beta_2,\beta_2\in\mathbb{C}$ are such that α_1,α_2 are linearly independent over \mathbb{Q} and β_1,β_2 are \mathbb{Q} -linearly independent, then at least one of the four numbers

$$e^{\alpha_1\beta_1}, e^{\alpha_1\beta_2}, e^{\alpha_2\beta_1}, e^{\alpha_2\beta_2},$$

is transcendental.

Corollaries of Four Exponentials

Corollary

If for some $\alpha \in \mathbb{C}$, both $2^{\alpha} \in \mathbb{N}$ and $3^{\alpha} \in \mathbb{N}$, then $\alpha \in \mathbb{N}$.

It is interesting to ask:

Open Question

If $3^{\alpha}-2^{\alpha}\in\mathbb{N}$ for $\alpha\in\mathbb{C}$, can we deduce that either $\alpha\in\mathbb{N}$ or $\alpha\in\mathbb{C}\setminus\overline{\mathbb{Q}}$?

Proposition (PS)

Schanuel's Conjecture implies that if $3^{\alpha} - 2^{\alpha} \in \mathbb{N}$, then $\alpha \in \mathbb{Q}$ or $\alpha \in \mathbb{C} \setminus \overline{\mathbb{Q}}$.

Proof

Assume Schanuel's Conjecture and consider the set $\{\log 2, \log 3, \alpha \log 2, \alpha \log 3\}$ for α an irrational algebraic number. This set is \mathbb{Q} -linearly independent, so by SC,

$$\operatorname{trdeg}_{\mathbb{Q}}(\mathbb{Q}\left(\log 2, \log 3, \alpha \log 2, \alpha \log 3, 2, 3, 2^{\alpha}, 3^{\alpha}\right)) \geqslant 4.$$

Noting that

$$\mathbb{Q}\left(\log 2, \log 3, \alpha \log 2, \alpha \log 3, 2, 3, 2^{\alpha}, 3^{\alpha}\right) = \mathbb{Q}\left(\log 2, \log 3, 2^{\alpha}, 3^{\alpha}\right)$$

and applying properties of bases of extension fields, we have

$$\operatorname{trdeg}_{\mathbb{O}}(\mathbb{Q}(\log 2, \log 3, 2^{\alpha}, 3^{\alpha})\}) = 4.$$

Proof, cont'd

Hence, $3^{\alpha}-2^{\alpha}$ is transcendental for α algebraic irrational. By the contrapositive, we have that if $3^{\alpha}-2^{\alpha}\in\mathbb{N}$, then α cannot be algebraic irrational, so $\alpha\in\mathbb{Q}$ or $\alpha\in\mathbb{C}\setminus\overline{\mathbb{Q}}$.

Consequences of Schanuel's Conjecture Which are Conjectures (cont'd)

Gel'fond (in 1948) and Schneider (in 1952) conjectured that:

Conjecture

If $\alpha, \beta \in \overline{\mathbb{Q}}$ and if β has degree $d \geqslant 2$, then $\mathrm{trdeg}_{\mathbb{Q}}\left(\mathbb{Q}\left(\alpha^{\beta}, \ldots, \alpha^{\beta^{d-1}}\right)\right) = d-1$.

Conjecture (Gel'fond)

If $\alpha_1,\ldots,\alpha_n\in\overline{\mathbb{Q}}$ are linearly independent over \mathbb{Q} , and $\beta_1,\ldots,\beta_n\in\overline{\mathbb{Q}}\setminus\{0\}$ are such that $\log\beta_1,\ldots,\log\beta_n$ are also linearly independent over \mathbb{Q} , then

$$e^{\alpha_1}, \ldots, e^{\alpha_n}, \log \beta_1, \ldots, \log \beta_n$$

are $\overline{\mathbb{Q}}$ -algebraically independent.

Even more conjectural consequences of Schanuel's Conjecture

Conjecture

[Algebraic Independence of Logarithms] Let $\beta_1, \ldots, \beta_n \in \overline{\mathbb{Q}} \setminus \{0\}$ and suppose that $\log \beta_1, \ldots, \log \beta_n$ are \mathbb{Q} -linearly independent. Then $\log \beta_1, \ldots, \log \beta_n$ are $\overline{\mathbb{Q}}$ -algebraically independent.

Conjecture

If $\alpha, \beta_1, \ldots, \beta_n \in \overline{\mathbb{Q}}$, $\alpha \neq 0, 1$, and $1, \beta_1, \ldots, \beta_n$ are linearly independent over \mathbb{Q} , then $\log \alpha, \alpha^{\beta_1}, \ldots, \alpha^{\beta_n}$ are $\overline{\mathbb{Q}}$ -algebraically independent.

Even more conjectural consequences of Schanuel's Conjecture

Lang and Ramachandra independently stated special cases of yet another conjecture which follows from Schanuel's Conjecture:

Conjecture (Lang and Ramachandra)

If $\alpha_1, \ldots, \alpha_n$ are \mathbb{Q} -linearly independent, and β is a transcendental number, then

$$\operatorname{trdeg}_{\mathbb{Q}}(\mathbb{Q}\left(e^{\alpha_1},\ldots,e^{\alpha_n},e^{\alpha_1\beta},\ldots,e^{\alpha_n\beta}\right))\geqslant n-1.$$

An interesting consequence

Another interesting consequence is:

Conjecture

The numbers

$$e, e^{\pi}, e^{e}, e^{i}, \pi, \pi^{\pi}, \pi^{e}, \pi^{i}, 2^{\pi}, 2^{e}, 2^{i}, \log \pi, \log 2, \log 3, \log \log 2, (\log 2)^{\log 3}, 2^{\sqrt{2}}$$

are \mathbb{Q} -algebraically independent (and, in particular, they are transcendental).

Jump to Relations to Model Theory

Lang's Conjecture

We now turn to a conjecture by Lang.

Definition

We define the field E by transfinite induction on the ordinals:

- $\bullet E_0 = \overline{\mathbb{Q}},$
- $\bullet E = E_{\omega} = \bigcup_{n \leq \omega} E_n$

Note

For ordinals $\alpha > \omega$, $E_{\alpha} = E$. In particular,

$$E_{\omega+1} = \overline{E_{\omega}\left(e^{x}: x \in E_{\omega}\right)} = \overline{E\left(e^{x}: x \in E\right)} = E.$$

Lang's Conjecture

Proposition

Schanuel's Conjecture implies that $\pi \notin E$.

Definition

We define the field L by

- $2 L_{n+1} = \overline{L_n(\log x : x \in \mathbb{E}_n)},$
- $\bullet L = L_{\omega} = \bigcup_{n < \omega} L_n,$

again noting that $L_{\omega+1} = L$.

Lang's Conjecture

Definition (linearly disjoint field extensions)

Let $F \supset K$ be a field extension and $K \subseteq F_1, F_2 \subseteq F$ be two subextensions. We say they are *linearly disjoint over* K if and only if whenever $\{x_1, \ldots, x_n\} \subset F_1$ is linearly independent over K, then $\{x_1, \ldots, x_n\}$ is also linearly independent over F_2 .

Theorem (Lang's Exercise)

Schanuel's Conjecture implies that the fields E and L are linearly disjoint over \mathbb{Q} .

Lang's Conjecture, corollaries

Corollary

Schanuel's Conjecture implies that:

The following corollary to Lang is interesting in light of the previous Conjectures:

Corollary

Schanuel's Conjecture implies that:

- π , $\log \pi$, $\log \log \pi$, ... are algebraically independent over E;
- e, e^e, e^{e^e}, \dots are algebraically independent over L;

Jump to Relations to Model Theory

Chow's Interesting Result I

We note that the Hermite-Lindemann Theorem can be restated as:

Theorem

The only solution to equation

$$e^{\alpha} = \beta$$

in the algebraic numbers is $\alpha = 0, \beta = 1$.

We know that the equation has many solutions for $\alpha, \beta \in \mathbb{C}$. But can we do better in narrowing down the domain over which it still has solutions? A natural idea would be to take $\overline{\mathbb{Q}}$ and close it with respect to taking exp and log, which leads us to the following definition:

Chow's Interesting Result II

Definition

A subfield F of $\mathbb C$ is closed under exp and \log if $(1) \exp(x) \in F$ for all $x \in F$ and $(2) \log(x) \in F$ for all nonzero $x \in F$, where \log is the branch of the natural logarithm function such that $-\pi < \operatorname{Im}(\log x) \leqslant \pi$ for all x. The field $\mathbb E$ of EL numbers is the intersection of all subfields of $\mathbb C$ that are closed under exp and \log .

Now, let us make the question a bit more specific: rather than considering pairs (α, β) , we consider the special case when $\alpha = -\beta$, so now we ask whether the equation

$$\alpha + \mathbf{e}^{\alpha} = \mathbf{0} \tag{1}$$

has a real root in \mathbb{E} . In [?], Timothy Chow claims that the Conjecture we have just stated is still unsolved:

Chow's Interesting Result III

Conjecture (Chow)

The real root R of $\alpha + e^{\alpha} = 0$ is not in \mathbb{E} .

Theorem

Schanuel's Conjecture implies that the real root R of $\alpha + e^{\alpha} = 0$ is not in \mathbb{E} .

In fact, Schanuel's Conjecture implies a stronger result, due to Lin [?]:

Theorem

Schanuel's Conjecture implies that whenever $f(x,y) \in \overline{\mathbb{Q}}[x,y]$ is an irreducible polynomial and $f(\alpha,\exp(\alpha))=0$ for some $\alpha \in \mathbb{C} \setminus \{0\}$, then $\alpha \notin \mathbb{L}$, where \mathbb{L} is the smallest algebraically closed subfield of \mathbb{C} that is closed under \exp and \log .

Jump to Relations to Model Theory

Even even more consequences! I

A curious result is given by Sondow:

Theorem

Assuming Schanuel's Conjecture, let $z, w \in \mathbb{C} \setminus \{0,1\}$. If both $z^w, w^z \in \overline{\mathbb{Q}}$, then z and w are either both rational or both transcendental.

There is another very interesting consequence of Schanuel's Conjecture by Guiseppina Terzo, concerning algebraic relations among the elements of the exponential ring (\mathbb{C}, e^x) . Let us first give the formal definition, found in:

Definition

An exponential ring is a pair (R, E) with R a commutative ring with 1 and $E: R \to \mathcal{U}(R)$ a morphism of the additive group of R into the multiplicative group of units of R satisfying E(x+y)=E(x).E(y) for all $x,y\in R$, and E(0)=1.

Even even more consequences! II

So, intuitively, E plays the role of the exponential function in the commutative ring R. For her result, Terzo uses a more general version of Schanuel's Conjecture, which holds for any exponential ring:

Conjecture (Schanuel's Condition)

An exponential ring R satisfies Schanuel's Condition if R is a characteristic 0 domain and whenever $\alpha_1, \ldots, \alpha_n$ in R are linearly independent over \mathbb{Q} , the ring $\mathbb{Z}[\alpha_1, \ldots, \alpha_n, E(\alpha_1), \ldots, E(\alpha_n)]$ has transcendence degree at least n over \mathbb{Q} .

We recall that:

Definition

The characteristic of a field K is the smallest positive integer n with the property nx = 0 for all $x \in K$, and it is zero if no such n exists.

With these preliminaries in mind, Terzo's result states:

Even even more consequences! III

Theorem

Assuming Schanuel's Conjecture, there are no further relations between π and i except the known ones, $e^{i\pi}=-1$ and $i^2=-1$.

Connections with Model Theory, take I

Definition (decidability)

A theory is *decidable* iff there is an effective procedure that, given an arbitrary formula expressible in the language of the theory, decides whether the formula is a member of the theory or not.

Open Question (Tarski, 1951)

Is the theory of the real field with exponentiation, \mathbb{R}_{exp} decidable?

Theorem (McIntyre and Wilkie, 1996)

Schanuel's Conjecture implies that the real field with exponentiation, \mathbb{R}_{exp} , is decidable.

"It's always a pleasure to introduce ideas from model theory to people who do real mathematics." Professor Boris Zilber

Definition

Let $X \subseteq K$ be finite. We define a *dimension*

$$\partial(X) = \sup\{\operatorname{trdeg}(Y \cup E(\operatorname{span}(Y)) - \operatorname{lindim}(Y) : X \subseteq Y \text{ is finite}\}\$$

and a closure operator

$$\operatorname{cl}(X) = \{a : \partial(X) = \partial(Xa)\}.$$

Theorem (Zilber, 2005)

For all uncountable cardinals κ , there is a unique model of Φ of cardinality κ . If $(K,+,,E) \models \Phi$, then every definable subset of K is countable or with countable complement. If $A \subseteq K$ is finite and $a,b \notin cl(A)$ there is an automorphism of K taking a to b.

Moreover, if $(K, +, ., E) \models \Phi$, then (K, +, ., E) satisfies the following five axioms:

Axiom (EXP)

$$E(x_1 + x_2) = E(x_1).E(x_2)$$

ker(E) = $\pi \mathbb{Z}$, some $\pi \in K$.

Axiom (SCH)

$$\operatorname{trdeg}(X \cup E(X)) - \operatorname{lindim}(X) \geqslant 0,$$

Axiom (EC)

For any non-overdetermined irreducible system of polynomial equations

$$P(x_1,\ldots,x_n,y_1,\ldots,y_n)=0$$

there exists a generic solution satisfying

$$y_i = E(x_i)$$
 $i = 1, \ldots, n$.

Axiom (CC)

Analytic subsets of K^n of dimension 0 are countable.

Axiom (ACF₀)

Axioms for algebraically closed fields of characteristic 0.

Even more from Zilber

Conjecture

The field of complex numbers with exponentiation, \mathbb{C}_{exp} , is isomorphic to the unique field with exponentiation K_E of cardinality 2^{\aleph_0} .

We conclude with a final interesting result from Model Theory which runs in a similar vein:

Theorem

There are at most countably many essential counterexamples to Schanuel's Conjecture.

Want more fun consequences?

- Lang's Exercise
- Chow's Interesting Result
- Terso's Curious Consequence
- Some of the Proofs we have omitted